
Control Hijacking Attacks

Alexandros Kapravelos
kapravelos@ncsu.edu

(Derived from slides from Chris Kruegel)

mailto:kapravelos@ncsu.edu
mailto:kapravelos@ncsu.edu

Attacker’s mindset
• Take control of the victim’s machine

– Hijack the execution flow of a running program
– Execute arbitrary code

• Requirements
– Inject attack code or attack parameters
– Abuse vulnerability and modify memory such that control flow is

redirected
• Change of control flow

– alter a code pointer (i.e., value that influences program counter)
– change memory region that should not be accessed

Buffer Overflows
• Result from mistakes done while writing code

– coding flaws because of
• unfamiliarity with language
• Ignorance about security issues
• unwillingness to take extra effort

• Often related to particular programming language
• Buffer overflows

– mostly relevant for C / C++ programs
– not in languages with automatic memory management

• dynamic bounds checks (e.g., Java)
• automatic resizing of buffers (e.g., Perl)

Buffer Overflows
• One of the most used attack techniques
• Advantages

– very effective
• attack code runs with privileges of exploited process

– can be exploited locally and remotely
• interesting for network services

• Disadvantages
– architecture dependent

• directly inject assembler code
– operating system dependent

• use call system functions
– some guesswork involved (correct addresses)

Process memory regions
• Stack segment

– local variables
– procedure calls

• Data segment
– global initialized variables (data)
– global uninitialized variables (bss)
– dynamic variables (heap)

• Code (Text) segment
– program instructions
– usually read-only

Top of
memory

Overflow types
• Overflow memory region on the stack

– overflow function return address
– overflow function frame (base) pointer
– overflow longjump buffer

• Overflow (dynamically allocated) memory region on the
heap

• Overflow function pointers
– stack, heap, BSS

Stack
• Usually grows towards smaller memory addresses

– Intel, Motorola, SPARC, MIPS
• Processor register points to top of stack

– stack pointer – SP
– points to last stack element or first free slot

• Composed of frames
– pushed on top of stack as consequence of function calls
– address of current frame stored in processor register

• frame/base pointer – FP
– used to conveniently reference local variables

Stack

Procedure Call

A Closer Look

A Closer Look

The foo Frame

Taking Control of the Program

Buffer Overflow
• Code (or parameters) get injected because

– program accepts more input than there is space allocated

• In particular, an array (or buffer) has not enough space
– especially easy with C strings (character arrays)
– plenty of vulnerable library functions

strcpy, strcat, gets, fgets, sprintf ..

• Input spills to adjacent regions and modifies
– code pointer or application data

• all the possibilities that we have enumerated before
– normally, this just crashes the program (e.g., sigsegv)

Example
// Test2.c
#include <stdio.h>
#include <string.h>

int vulnerable(char* param)
{

char buffer[100];
strcpy(buffer, param);

}

int main(int argc, char* argv[])
{

vulnerable(argv[1]);
printf(“Everything's fine\n”);

}

Buffer that can contain 100 bytes

Copy an arbitrary number of
characters from param to buffer

Let's Crash

> ./test2 hello Everything's fine

> ./test2 AA
AA
AA
AA
Segmentation fault

>

> gdb ./test2 (gdb) run hello

Starting program: ./test2 Everything's fine

(gdb) run AAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAA

Starting program: ./test2 AAAAAAAAA...
Program received signal SIGSEGV,
Segmentation fault.
0x41414141 in ?? ()

What Happened?

buffer

41 41 41 41
41 41 41 41

41 41 41 41
41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

params

ret address

saved EBP

41 41 41 41

Choosing Where to Jump
• Address inside a buffer of which the attacker controls the content

– PRO: works for remote attacks
– CON: the attacker need to know the address of the buffer, the memory page containing

the buffer must be executable
• Address of a environment variable

– PRO: easy to implement, works with tiny buffers
– CON: only for local exploits, some program clean the environment, the stack must be

executable
• Address of a function inside the program

– PRO: works for remote attacks, does not require an executable stack
– CON: need to find the right code, one or more fake frames must be put on the stack

Jumping into the Buffer

• The buffer that we are overflowing is usually a good place to put the
code (shellcode) that we want to execute

• The buffer is somewhere on the stack, but in most cases the exact
address is unknown
– The address must be precise: jumping one byte before or after would just

make the application crash
– On the local system, it is possible to calculate the address with a debugger,

but it is very unlikely to be the same address on a different machine
– Any change to the environment variables affect the stack position

Solution: The NOP Sled
• A sled is a “landing area” that is put in front of the shellcode
• Must be created in a way such that wherever the program jump into it..

– .. it always finds a valid instruction
– .. it always reaches the end of the sled and the beginning of the shellcode

• The simplest sled is a sequence of no operation (NOP) instructions
– single byte instruction (0x90) that does not do anything
– more complex sleds possible (ADMmutate)

• It mitigates the problem of finding the exact address to the buffer by increasing
the size of the target are area

Assembling the Malicious Buffer

params
ret address
base pointer

buffer90 90 90 90

90 90 90 90

shellcode

buf address

previous frame

function arguments

new code pointer

NOP sledge

shellcode

Code Pointer

Any return address into
the NOP sled succeeds

Solution: Jump using a Register

• Find a register that points to the buffer (or somewhere into it)
– ESP
– EAX (return value of a function call)

• Locate an instruction that jump/call using that register
– can also be in one of the libraries
– does not even need to be a real instruction, just look for the right

sequence of bytes
jmp ESP = 0xFF 0xE4

• Overwrite the return address with the address of that instruction

shellcode

Buffer Overflow
• Executable content (called shellcode)

– usually, a shell should be started
• for remote exploits - input/output redirection via socket

– use system call (execve) to spawn shell

• Shell code can do practically anything
– create a new user
– change a user password
– modify the .rhost file
– bind a shell to a port (remote shell)
– open a connection to the attacker machine

Shellcode
void main(int argc, char **argv) { char *name[2];

name[0] = “/bin/sh“; name[1] = NULL;

execve(name[0], &name[0], &name[1]); exit(0);

}

int execve(char *file, char *argv[], char *env[])

• file is name of program to be executed
“/bin/sh“

• argv is address of null-terminated argument array
{ “/bin/sh“, NULL }

• env is address of null-terminated environment array
NULL (0)

Shellcode

int execve(char *file, char *argv[], char *env[])

0x8(%ebp),%ebx
0xc(%ebp),%ecx
0x10(%ebp),%edx
$0xb,%eax
$0x80

(gdb) disas execve
....
mov
mov
mov
mov
int
....

copy *file to ebx
copy *argv[] to ecx
copy *env[] to edx

put the system call
number in eax
(execve = 0xb)

invoke the syscall

• Spawning the shell in assembly

1. move system call number (0x0b) into %eax

2. move address of string /bin/sh into %ebx
3. move address of the address of /bin/sh into %ecx (using lea)

4. move address of null word into %edx

5. execute the interrupt 0x80 instruction

Shellcode

30

• file parameter
– we need the null terminated string /bin/sh somewhere in memory

• argv parameter
– we need the address of the string /bin/sh somewhere in memory,
– followed by a NULL word

• env parameter
– we need a NULL word somewhere in memory
– we will reuse the null pointer at the end of argv

Shellcode

• execve arguments

located at address addr

/bin/sh0addr0000

env -- pointer to null-word

arg -- pointer to address of null-terminated string

file -- null-terminated string

Shellcode

• Problem - position of code in memory is unknown
– How to determine address of string

• We can make use of instructions using relative
addressing

• call instruction saves IP on the stack and jumps
• Idea

– jmp instruction at beginning of shellcode to call instruction
– call instruction right before /bin/sh string
– call jumps back to first instruction after jump
– now address of /bin/sh is on the stack

Shellcode

popl %esi
jmp call_addr

Shellcode

call jmp_addr + 1

/bin/sh0000

%esi holds address
of string /bin/sh

jmp_addr

call_addr

Shellcode

jmp 0x26 # 2 bytes

popl %esi # 1 byte
movl %esi,0x8(%esi) # 3 bytes
movb $0x0,0x7(%esi) # 4 bytes
movl $0x0,0xc(%esi) # 7 bytes
movl $0xb,%eax # 5 bytes
movl %esi,%ebx # 2 bytes
leal 0x8(%esi),%ecx # 3 bytes
leal 0xc(%esi),%edx # 3 bytes
int $0x80 # 2 bytes
movl $0x1, %eax # 5 bytes
movl $0x0, %ebx # 5 bytes
int $0x80 # 2 bytes
call -0x2b # 5 bytes
.string \"/bin/sh\" # 8 bytes

The Shellcode (almost ready)

execve()

setup

exit()

setup

Pulling It All Together

previous frame

function arguments

return address

previous frame pointer

local variables

char buffer[]

new code pointer

shellcode

Pulling It All Together

previous frame

function arguments

return address

previous frame pointer

local variables

char buffer[]

new code pointer

shellcode

Overflow

Pulling It All Together

previous frame

function arguments

new code pointer

shellcode

• Shellcode is usually copied into a string buffer

• Problem
– any null byte would stop copying
→ null bytes must be eliminated

mov 0x0,
mov 0x1,

reg
reg

→ xor
→ xor

reg,reg
reg, reg; inc reg

Shellcode

• Concept of user identifiers (uids)
– real user id

• ID of process owner

– effective user id
• ID used for permission checks

– saved user id
• used to temporarily drop and restore privileges

• Problem
– exploited program could have temporarily dropped privileges

• Shellcode has to enable privileges again (using setuid)

• Setuid Demystified: Hao Chen, David Wagner, and Drew Dean

Shellcode

• Buffer can be too small to hold exploit code
• Store exploit code in environmental variable

– environment stored on stack
– return address has to be redirected to environment variable

• Advantage
– exploit code can be arbitrary long

• Disadvantage
– access to environment needed

Small Buffers

• Heap overflow requires modification of boundary tags
– in-band management information
– task is to fake these tags to trick dlmalloc into overwriting addresses of attackers

choice

• Different techniques for other memory managers

– System V (Solaris, IRIX) - self-adjusting binary trees
– Phrack 57-9 (Once upon a free())

Heap Overflow

• Problem of user supplied input that is used with *printf()
– printf(“Hello world\n“); // is ok

– printf(user_input); // vulnerable

• *printf()
– function with variable number of arguments

 int printf(const char *format, ...)

– as usual, arguments are fetched from the stack

• const char *format is called format string
– used to specify type of arguments

• %d or %x for numbers
• %s for strings

Format String Vulnerability

Format String Vulnerability

#include <stdio.h>

int main(int argc, char **argv) { char
buf[128];

int x = 1;

snprintf(buf, sizeof(buf), argv[1]);
buf[sizeof(buf) - 1] = '\0';

buf);printf("buffer (%d): %s\n", strlen(buf),
printf("x is %d/%#x (@ %p)\n", x, x, &x);
return 0;

}

Format String Vulnerability

”AAAA %x %x %x %x“

1 bffff680 4000a32c

"AAAA %x %x %x %x %x“

1 bffff680 4000a32c 1

"AAAA %x %x %x %x %x %x“

1 bffff680 4000a32c 1 41414141

chris@euler:~/test > ./vul

buffer (28): AAAA 40017000

x is 1/0x1 (@ 0xbffff638)

chris@euler:~/test > ./vul

buffer (35): AAAA 40017000

x is 1/0x1 (@ 0xbffff638)

chris@euler:~/test > ./vul

buffer (44): AAAA 40017000

x is 1/0x1 (@ 0xbffff638)

Format String Vulnerability

Stack Layout

stack frame for main()
char buf[128]

int x

fmt string

sizeof(buf)

&buf[0]

arguments for snprintf()

stack frame for snprintf()

Format String Vulnerability

• %n

The number of characters written so far is stored into the

integer indicated by the int*(or variant) pointer argument

(man 3 printf)

• One can use width modifier to write arbitrary values
– for example, %.500d
– even in case of truncation, the values that would have been written are used for %n

Format String Vulnerability

